2,699 research outputs found

    Partnering Undergraduate Engineering Students With Preservice Teachers to Design and Teach an Elementary Engineering Lesson Through Ed+gineering

    Get PDF
    Major challenges in engineering education include retention of undergraduate engineering students (UESs) and continued engagement after the first year when concepts increase in difficulty. Additionally, employers, as well as ABET, look for students to demonstrate non-technical skills, including the ability to work successfully in groups, the ability to communicate both within and outside their discipline, and the ability to find information that will help them solve problems and contribute to lifelong learning. Teacher education is also facing challenges given the recent incorporation of engineering practices and core ideas into the Next Generation Science Standards (NGSS) and state level standards of learning. To help teachers meet these standards in their classrooms, education courses for preservice teachers (PSTs) must provide resources and opportunities to increase science and engineering knowledge, and the associated pedagogies. To address these challenges, Ed+gineering, an NSF-funded multidisciplinary collaborative service learning project, was implemented into two sets of paired-classes in engineering and education: a 100 level mechanical engineering class (n = 42) and a foundations class in education (n = 17), and a fluid mechanics class in mechanical engineering technology (n = 23) and a science methods class (n = 15). The paired classes collaborated in multidisciplinary teams of 5-8 undergraduate students to plan and teach engineering lessons to local elementary school students. Teams completed a series of previously tested, scaffolded activities to guide their collaboration. Designing and delivering lessons engaged university students in collaborative processes that promoted social learning, including researching and planning, peer mentoring, teaching and receiving feedback, and reflecting and revising their engineering lesson. The research questions examined in this pilot, mixed-methods research study include: (1) How did PSTs’ Ed+gineering experiences influence their engineering and science knowledge?; (2) How did PSTs’ and UESs’ Ed+gineering experiences influence their pedagogical understanding?; and (3) What were PSTs’ and UESs’ overall perceptions of their Ed+gineering experiences? Both quantitative (e.g., Engineering Design Process assessment, Science Content Knowledge assessment) and qualitative (student reflections) data were used to assess knowledge gains and project perceptions following the semester-long intervention. Findings suggest that the PSTs were more aware and comfortable with the engineering field following lesson development and delivery, and often better able to explain particular science/engineering concepts. Both PSTs and UESs, but especially the latter, came to realize the importance of planning and preparing lessons to be taught to an audience. UESs reported greater appreciation for the work of educators. PSTs and UESs expressed how they learned to work in groups with multidisciplinary members—this is a valuable lesson for their respective professional careers. Yearly, the Ed+gineering research team will also request and review student retention reports in their respective programs to assess project impact

    Enhancing Preservice Teachers\u27 Intention to Integrate Engineering Through a Multi-Disciplinary Partnership (Evaluation)

    Get PDF
    Driven by the need to broaden participation and increase recruitment in STEM fields, considerable efforts are underway to promote the infusion of engineering into elementary and secondary grade levels. The benefits of engineering education and the strong support from professional and educational groups are well documented, yet the actual integration of engineering content in the K-12 setting remains a challenge. Pre-college educator programs that train future teachers are a natural target for the integration efforts. Although elementary educators recognize the importance of integrating engineering in their classrooms, they often lack the confidence to teach engineering content. The absence of effective engineering instruction in teacher preparation programs leaves future educators unprepared for this challenge. Ed+gineering is an NSF-funded partnership between education and engineering students and faculty aimed at increasing preservice teacher (PST) preparation, confidence, and intention to integrate engineering into their teaching. The project partners education and engineering students at three points in their professional preparation within the context of their respective university courses. As part of their coursework, small cross-disciplinary teams plan and deliver culturally responsive engineering lessons to elementary school students. This paper investigates the impact of Ed+gineering on PSTs’ knowledge of engineering practices, self-efficacy to integrate engineering, pedagogical knowledge, beliefs about engineering integration, and engineering pedagogy. ANCOVA analysis was used to assess the impact of Ed+gineering on participating PSTs. Data was collected from three collaborations involving students in engineering and education during Spring 2020. A validated survey was used to assess the variables of interest. Preliminary results suggest that the Ed+gineering partnership had a positive impact on engineering pedagogical knowledge, general pedagogical knowledge, knowledge of engineering practices, and self-efficacy for integrating engineering. The specific magnitude of the impact and its implications will be discussed in this paper

    The Impact of a Multidisciplinary Service-Learning Project on Engineering Knowledge and Professional Skills in Engineering in Engineering and Education Students

    Get PDF
    A multidisciplinary service-learning project that involved teaching engineering to fourth and fifth graders was implemented in three sets of engineering and education classes to determine if there was an impact on engineering knowledge and teamwork skills in both the engineering and education students as well as persistence in the engineering students. Collaboration 1 paired a 100-level engineering Information Literacy class in Mechanical and Aerospace Engineering with a 300-level Educational Foundation class. Collaboration 2 combined a 300-level Electromechanical Systems class in Mechanical Engineering with a 400-level Educational Technology class. Collaboration 3 paired a 300-level Fluid Mechanics class in Mechanical Engineering Technology with a 400-level Elementary Science Methods class. Collaborations 1 and 3 interacted with fourth or fifth graders by developing and delivering lessons to the elementary students. Students in collaboration 2 worked with fifth graders in an after-school technology club. While each collaboration had its unique elements, all collaborations included the engineering design process both in classroom instruction and during the service learning project. Quantitative data were collected from both engineering and education students in a pretest/posttest design. Teamwork skills were measured in engineering students using a validated teamwork skills assessment based on peer evaluation. Each class had a comparison class taught by the same instructor that included a team project, and the same quantitative measures. Engineering students who participated in collaboration 1 were evaluated for retention, which was defined as students who were still enrolled in the college of engineering and technology two semesters after completion of the course. Engineering students also completed an evaluation of academic and professional persistence. For the engineering students, none of the assessments involving technical skills had significant differences, although the design process knowledge tests trended upward in the treatment classes. The preservice teachers in the treatment group scored significantly higher in the design process knowledge test, and preservice teachers in collaborations 1 and 3 had higher scores in the engineering knowledge test than the comparison group. Teamwork skills in the treatment group were significantly higher than in the comparison group for both engineering and education students. Thus, engineering and education students in the treatment groups saw gains in teamwork skills, while education students saw more gains in engineering knowledge. Finally, all engineering students had significantly higher professional persistence

    What do Undergraduate Engineering Students and Preservice Teachers Learn by Collaborating and Teaching Engineering and Coding through Robotics?

    Get PDF
    This research paper presents preliminary results of an NSF-supported interdisciplinary collaboration between undergraduate engineering students and preservice teachers. The fields of engineering and elementary education share similar challenges when it comes to preparing undergraduate students for the new demands they will encounter in their profession. Engineering students need interprofessional skills that will help them value and negotiate the contributions of various disciplines while working on problems that require a multidisciplinary approach. Increasingly, the solutions to today\u27s complex problems must integrate knowledge and practices from multiple disciplines and engineers must be able to recognize when expertise from outside their field can enhance their perspective and ability to develop innovative solutions. However, research suggests that it is challenging even for professional engineers to understand the roles, responsibilities, and integration of various disciplines, and engineering curricula have traditionally left little room for development of non-technical skills such as effective communication with a range of audiences and an ability to collaborate in multidisciplinary teams. Meanwhile, preservice teachers need new technical knowledge and skills that go beyond traditional core content knowledge, as they are now expected to embed engineering into science and coding concepts into traditional subject areas. There are nationwide calls to integrate engineering and coding into PreK-6 education as part of a larger campaign to attract more students to STEM disciplines and to increase exposure for girls and minority students who remain significantly underrepresented in engineering and computer science. Accordingly, schools need teachers who have not only the knowledge and skills to integrate these topics into mainstream subjects, but also the intention to do so. However, research suggests that preservice teachers do not feel academically prepared and confident enough to teach engineering-related topics. This interdisciplinary project provided engineering students with an opportunity to develop interprofessional skills as well as to reinforce their technical knowledge, while preservice teachers had the opportunity to be exposed to engineering content, more specifically coding, and develop competence for their future teaching careers. Undergraduate engineering students enrolled in a computational methods course and preservice teachers enrolled in an educational technology course partnered to plan and deliver robotics lessons to fifth and sixth graders. This paper reports on the effects of this collaboration on twenty engineering students and eight preservice teachers. T-tests were used to compare participants’ pre-/post- scores on a coding quiz. A post-lesson written reflection asked the undergraduate students to describe their robotics lessons and what they learned from interacting with their cross disciplinary peers and the fifth/sixth graders. Content analysis was used to identify emergent themes. Engineering students’ perceptions were generally positive, recounting enjoyment interacting with elementary students and gaining communication skills from collaborating with non-technical partners. Preservice teachers demonstrated gains in their technical knowledge as measured by the coding quiz, but reported lacking the confidence to teach coding and robotics independently of their partner engineering students. Both groups reported gaining new perspectives from working in interdisciplinary teams and seeing benefits for the fifth and sixth grade participants, including exposing girls and students of color to engineering and computin

    How Does Working on an Interdisciplinary Service-Learning Project vs. a Disciplinary Design Project Affect Peer Evaluators\u27 Teamwork Skills

    Get PDF
    Over the course of several semesters, two different project-based learning approaches were used in two undergraduate engineering courses–a 100-level introductory course that covered a general education requirement on information literacy and a 300-level fluid mechanics course. One project (treatment) was an interdisciplinary service-learning project, implemented with undergraduate engineering and education students who collaborated to develop and deliver engineering lessons to fourth and fifth-grade students in a field trip model. The other projects (comparison) involved a team-based design project contained within each class. In the 100-level course, students selected their project based on personal interests and followed the engineering design process to develop, test, and redesign a prototype. In the fluid mechanics class, students designed a pumped pipeline system for a hypothetical plant. This study aimed to determine whether participating in the interdisciplinary project affected students’ evaluation of their own and their teammates’ teamwork effectiveness skills, measured using the Behaviorally Anchored Rating Scale (BARS) version of the Comprehensive Assessment of Team Member Effectiveness(CATME). The five dimensions of CATME measured in this study are (1) contribution to the team’s work, (2) interacting with teammates, (3) keeping the team on track, (4) expecting quality, and (5) having relevant knowledge, skills, and abilities (KSAs). The quantitative data from CATME were analyzed using ANCOVA analysis. Furthermore, since data were collected over three semesters and coincided with the pre, during, and post-phases of the COVID-19 pandemic, it was possible to examine the effects of the evolving classroom constraints over the course of the pandemic on the teamwork effectiveness skills of both the treatment and comparison classes. Preliminary results suggest that students in the treatment classes perceived that their teammates had greater relevant knowledge, skills, and abilities than the comparison cohort. Engineering students in the treatment group also believed their team members were more capable of quality work than the engineering students in the comparison group. Moreover, preliminary results showed a significant drop in scores for expecting quality and having relevant KSA during the peak of COVID during online instruction and performance of both projects, followed by a rise in mean scores during the return to in-person classes. Reflections from available qualitative data were paired to help understand the quantitative data results further

    Geochemistry of fluid discharges from Peteroa volcano (Argentina-Chile) in 2010-2015: Insights into compositional changes related to the fluid source region(s).

    Get PDF
    This study presents the first geochemical data of fluid discharges collected from February 2010 to March 2015 from the Planchon-Peteroa-Azufre Volcanic Complex (PPAVC), located in the Transitional Southern Volcanic Zone (TSVZ) at the border between Argentina and Chile. During the study period, from January 2010 to July 2011, Peteroa volcano experienced phreatic to phreatomagmatic eruption possibly related to the devastating Maule earthquake occurred on February 27, 2010. The compositional dataset includes low temperature (from 43.2 to 102 degrees C) gas discharges from (i) the summit of Peteroa volcano and (ii) the SE flank of Azufre volcano, both marked by a significant magmatic fluid contribution, as well as bubbling gases located at the foothill of the Peteroa volcanic edifice, which showed a chemical signature typical of hydrothermal fluids. In 2012, strong compositional changes affected the Peteroa gases from the summit area: the acidic gas species, especially SO2, increased, suggesting an input of fluids from magma degassing. Nevertheless, the R/Ra and delta C-13-CO2 values decreased, which would imply an enhanced contribution from a meteoric-hydrothermal source. In 2014-2015, the chemical and isotopic compositions of the 2010-2011 gases were partially restored. The anomalous decoupling between the chemical and the isotopic parameters was tentatively interpreted as produced by degassing activity from a small batch of dacitic magma that in 2012 masked the compositional signature of the magmatic fluids released from a basaltic magma that dominated the gas chemistry in 2010-2011. This explanation reliably justifies the observed geochemical data, although the mechanisms leading to the change in time of the dominating magmatic fluid source are not clear. At this regard, a geophysical survey able to provide information on the location of the two magma batches could be useful to clarify the possible relationships between the compositional changes that affected the Peteroa fluid discharges and the 2010-2011 eruptive activity.FONDECYT Iniciacion Project 11100372 FONDAP "Centro de Excelencia en Geotermia de los Andes" 15090013 Universidad de Buenos Aires UBACyT 20020120300077BA IDEAN institute (UBA-CONICET) Laboratory of Fluid and Rock Geochemistry of the Department of Earth Sciences (Florence, Italy

    Influence of depression and interpersonal support on adherence to antiretroviral therapy among people living with HIV

    Get PDF
    BackgroundPoor adherence and under-utilization of antiretroviral therapy (ART) services have been major setbacks to achieving 95-95-95 policy goals in Sub-Saharan Africa. Social support and mental health challenges may serve as barriers to accessing and adhering to ART but are under-studied in low-income countries. The purpose of this study was to examine the association of interpersonal support and depression scores with adherence to ART among persons living with HIV (PLWH) in the Volta region of Ghana.MethodsWe conducted a cross-sectional survey among 181 PLWH 18 years or older who receive care at an ART clinic between November 2021 and March 2022. The questionnaire included a 6-item simplified ART adherence scale, the 20-item Center for Epidemiologic Studies Depression Scale (CES-D), and the 12-item Interpersonal Support Evaluation List-12 (ISEL-12). We first used a chi-squared or Fisher’s exact test to assess the association between these and additional demographic variables with ART adherence status. We then built a stepwise multivariable logistic regression model to explain ART adherence.ResultsART adherence was 34%. The threshold for depression was met by 23% of participants, but it was not significantly associated with adherence in multivariate analysis(p = 0.25). High social support was reported by 48.1%, and associated with adherence (p = 0.033, aOR = 3.45, 95% CI = 1.09–5.88). Other factors associated with adherence included in the multivariable model included not disclosing HIV status (p = 0.044, aOR = 2.17, 95% CI = 1.03–4.54) and not living in an urban area (p = 0.00037, aOR = 0.24, 95% CI = 0.11–0.52).ConclusionInterpersonal support, rural residence, and not disclosing HIV status were independent predictors of adherence to ART in the study area

    Usefulness of sputum gram stain for etiologic diagnosis in community-acquired pneumonia: a systematic review and meta-analysis

    Get PDF
    Background: implementation of sputum Gram stain in the initial assessment of community-acquired pneumonia (CAP) patients is still controversial. We performed a systematic review and meta-analysis to investigate the usefulness of sputum Gram stain for defining the etiologic diagnosis of CAP in adult patients. Methods: we systematically searched the Medline, Embase, Science Direct, Scopus and LILACS databases for full-text articles. Relevant studies were reviewed by at least three investigators who extracted the data, pooled them using a random effects model, and carried out quality assessment. For each bacterium (Streptococcus pneumoniae, Haemophilus influenzae, Staphylococcus aureus, and Gram-negative bacilli), pooled sensitivity, specificity, positive and negative likelihood ratios were reported. Results: after a review of 3539 abstracts, 20 articles were included in the present meta-analysis. The studies included yielded 5619 patients with CAP. Pooled sensitivity and pooled specificity of sputum Gram stain were 0.59 (95% CI, 0.56-0.62) and 0.87 (95% CI, 0.86-0.89) respectively for S. pneumoniae, 0.78 (95% CI, 0.72-0.84) and 0.96 (95% CI, 0.94-0.97) for H. influenzae, 0.72 (95% CI, 0.53-0.87) and 0.97 (95% CI, 0.95-0.99) for S. aureus, and 0.64 (95% CI, 0.49-0.77) and 0.99 (95% CI, 0.97-0.99) for Gram-negative bacilli. Conclusion: Sputum Gram stain test is sensitive and highly specific for identifying the main causative pathogens in adult patients with CAP

    Spatiotemporal analysis identifies ABF2 and ABF3 as key hubs of endodermal response to nitrate

    Get PDF
    Nitrate is a nutrient and a potent signal that impacts global gene expression in plants. However, the regulatory factors controlling temporal and cell type–specific nitrate responses remain largely unknown. We assayed nitrate-responsive transcriptome changes in five major root cell types of the Arabidopsis thaliana root as a function of time. We found that gene-expression response to nitrate is dynamic and highly localized and predicted cell type–specific transcription factor (TF)–target interactions. Among cell types, the endodermis stands out as having the largest and most connected nitrate-regulatory gene network. ABF2 and ABF3 are major hubs for transcriptional responses in the endodermis cell layer. We experimentally validated TF–target interactions for ABF2 and ABF3 by chromatin immunoprecipitation followed by sequencing and a cell-based system to detect TF regulation genome-wide. Validated targets of ABF2 and ABF3 account for more than 50% of the nitrate-responsive transcriptome in the endodermis. Moreover, ABF2 and ABF3 are involved in nitrate-induced lateral root growth. Our approach offers an unprecedented spatiotemporal resolution of the root response to nitrate and identifies important components of cell-specific gene regulatory networks
    • …
    corecore